实例1:判断某点是否在根轨迹上

  满足相角条件是s点位于根轨迹上的充分必要条件

  判断s是否为根轨迹上的点。

G(s)=K(s+1)(s+5)G(s) = \frac{K^*}{(s+1)(s+5)}

  (1) s = -2  (2) s = -8   (3) s = -7 + j4   (4) s = -3 + j3

解答:
  相角条件:(s+1)(s+5)=(2k+1)π-\angle(s+1)-\angle(s+5) = (2k+1)\pi

  (1) (2+1)(2+5)=π0=π-\angle(-2+1)-\angle(-2+5) = -\pi - 0 = -\pi  在
  (2) (8+1)(8+5)=ππ=2π-\angle(-8+1)-\angle(-8+5) = -\pi - \pi = -2\pi  不在
  (3) (7+j4+1)(7+j4+5)(2k+1)π-\angle(-7 + j4 + 1)-\angle(-7 + j4+5) \neq (2k+1)\pi  不在
  (4) (3+j3+1)(3+j3+5)=(πα)α=π-\angle(-3 + j3+1)-\angle(-3 + j3+5) = -(\pi-\alpha) - \alpha = -\pi  在